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Noise self-pumping in long Josephson junctions
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The noise self-pumping effect in a spatially extended system modeled by a sine-Gordon equation is inves-
tigated. This effect is realized in a similar fashion as usual ac self-pumping effect in long Josephson junctions:
fluctuating solitons, radiating from the junction, induce fluctuating magnetic field, which in turn modulates the
dynamics of the soliton chain, and increases the spectral linewidth. Contrary to the theory for short Josephson
junctions, predicting linear decrease in the spectral linewidth with increase in junction length, the minimum of
the linewidth versus the length is observed both for uniform and nonuniform bias feed distributions.
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I. INTRODUCTION

For several decades the sine-Gordon equation, describing
a viscous flow of solitary waves under the action of bias
force, has been the most adequate model for the long Joseph-
son tunnel junctions (JTJs). This model has been used for the
description of Josephson oscillators,'=® vortex transistors,*
Josephson transmission lines,” and also in DNA-promoter
dynamics,®” dislocation theory, and charge density waves in
dielectrics (see Ref. 8 and references therein). The basic
properties of long underdamped JTJ are well known.’> How-
ever, the investigation of fluctuational properties of this spa-
tially extended object is restricted by its complexity. Even
the mean escape times from zero-voltage state have been
investigated analytically and very approximately; the task
can hardly be solved numerically, since it requires numerical
solution of nonlinear partial differential equation with noise.”
For example, there were discussions about the kink nucle-
ation rate in annular JTJ (see Ref. 8). For JTJ of linear ge-
ometry with only one fluxon traveling and rejecting from
boundaries (shuttle fluxon oscillator), the formula for the
spectral linewidth gives reasonable agreement with the ex-
perimental results.! For multifluxon regimes the dynamics is
much more complex. One of the examples of the device,
where the multifluxon regime is maintained by applying
large external magnetic field, is the flux-flow oscillator
(FFO).2 It demonstrates very rich behavior, which in particu-
lar results in the ac self-pumping effect,»!° where the radia-
tion of the FFO leads to specific steps at current-voltage (IV)
curves. The FFO has emerged as the most promising local
oscillator for superconducting spectrometers.'! It was a puz-
zling problem for more than a decade to find a formula for
the spectral linewidth of FFO: it was intensively studied both
experimentally'%-!# and theoretically.!>~!° It is known that the
FFO linewidth is rather large, and by roughly one order of
magnitude exceeds the linewidth of a short JTJ.2° The for-
mula for the linewidth,'® taking into account the differential
resistance as a function of both bias current and magnetic
field, has proven to adequately describe the experimental
results.!1# Still, the conversion of bias current fluctuations
to magnetic field fluctuations and the reason of so large line-
width is unclear. In Ref. 21, the investigation of the influence
of the bias current profile of FFO on its power and the line-
width has been performed. It has been found that for differ-
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ent current profiles, giving significantly different differential
resistances, the minimal attainable linewidth is nearly the
same so one cannot go below the certain limit. On the other
hand, varying the load resistances of the FFO, the linewidth
can be decreased further by about 1.5 times. On the basis of
these two facts, the hypothesis of the noise self-pumping
effect has been discussed.

The aim of the present paper is to study the noise self-
pumping effect in a long JTJ described by the one-
dimensional (1D) sine-Gordon equation with noise, in par-
ticular, by investigation of the spectral characteristics versus
junction length, and to discover the reason of anomalously
large FFO linewidth.

II. STATEMENT OF THE PROBLEM

The sine-Gordon equation, giving a good qualitative de-
scription of basic properties of a long JTJ, has the form

b+ A= b= By + M(x) — sin( ) + nf(x,t), (1)

where indices ¢ and x denote temporal and spatial deriva-
tives. Space and time are normalized to the Josephson pen-
etration length A; and to the inverse plasma frequency w;l,
resygectively, a=w,/ 0. is the damping parameter, ©,
=\2el /hC, w.=2el Ry/t, . is the critical current, C is the
JTJ capacitance, Ry is the normal state resistance, S is the
surface loss parameter, 7(x) is the dc overlap bias current
density, normalized to the critical current density J,., and
n,(x,1) is the fluctuational current density. If the critical cur-
rent density is fixed and the fluctuations are treated as white
Gaussian noise with zero mean, its correlation function is
(. )mlx’ 1)) =2ayd(x~x")dt~1"), where y=Ir/(J.\,)
is the dimensionless noise intensity (Ref. 9), I;=2¢kT/% is
the thermal current, e is the electron charge, % is the Planck
constant, & is the Boltzmann constant, and 7 is the tempera-
ture.

The boundary conditions that describe coupling to the en-
vironment have the form?

$(0,0) + rpc;d(0,0), — ¢, p(0,1), + Bric d(0,0)
+ ﬂ¢(0’t)xt =I- AF’ (2)
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DL, 1)+ rRegP(L,1) o + CRA(L, 1), + Brreg (L, 1)
+ BPH(L,1),, =T +Al. (3)

Here I' is the normalized magnetic field, A'=0.05" (see
Ref. 3) and L is the dimensionless length of JTJ. The terms
with the dimensionless capacitances and resistances c; x and
ry g are the RC load of a JTJ placed at the left (output) and at
the right (input) ends, respectively. Following Ref. 19, if
both the overlap 7,,=(1/L)[57(x)dx and the inline 7,
=2AT"/L components of the current are present, the total
current 7,, with respect to which all current-voltage charac-
teristics (IVCs) v(7,) will be computed is the sum of overlap
and inline components: 7,=7,,+ i,

For the linewidth of short JTJ, the following formula is
known? (here and below the linewidth is defined as full
width, half power):

Af,= 2a'er21/L, (4)

where ry=dv/dn;, is the differential resistance. It is found
experimentally'? that even for small r,, the FFO linewidth is
almost one order of magnitude larger than predicted by Eq.
(4). The formula for the FFO linewidth of Ref. 18, which in
addition to r, takes into account the differential resistance
over magnetic field rgl‘ =Ldv/dl,

Afero=2ay(ry+ or§H?IL, (5)

demonstrates good agreement with the experiment.'>!# In
this formula however, the factor o, describing the conversion
of bias current fluctuations to magnetic field fluctuations, is
unknown, and the nature of this conversion is not yet
clear.!¥!%1819 To study the FFO linewidth, let us perform
computer simulation of Eq. (1) with noise. The used implicit
difference scheme was tested in Ref. 9.

In the frame of the present paper, let us consider and
compare two limiting cases of bias current distribution: uni-
form 7(x)=1, and nonuniform one, characteristic for a su-

perconductive thin film:2%-22

7oL
n(x) = [ N
mx(L - x)

(6)

The current profile [Eq. (6)] naturally appears in a long nar-
row JTJ, and only special means, such as the increase in the
junction width, allow to make the distribution more uniform.

III. RESULTS

It is reasonable to take the parameters for practical FFOs
with long flux flow steps (FFSs):? a=0.033, B=0.035, ¢,
=cg=100, r,=2, rg=100, and y=0.1. The IVCs as well as
the linewidth are computed for 1000 realizations for sequen-
tially increasing the bias current values with fixed magnetic
field '=3.6. From Fig. 1, one can see that for uniform bias
current distribution, the Fiske steps with an increase in the
junction length merge into continuous FFS. After approach-
ing L=20 the IVCs almost coincide with each other. A dif-
ferent picture is observed for nonuniform distribution [Eq.
(6)]; while for small lengths, the behavior is nearly the same
as for uniform; for larger lengths the height of the FFSs
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FIG. 1. (Color online) The IVC of loaded FFO for a=0.033,
B=0.035, '=3.6, and y=0.1. Magenta curve with rectangles—bias
current distribution [Eq. (6)] for L=40, all other curves are for
uniform distribution. Green curve with triangles: L=2, cyan curve
with circles: L=35, red curve with crosses: L=20, and blue curve
with diamonds: L=40. By dashes, the ohmic line is shown.

decreases (see the curve for L=40), and differential resis-
tance r,; grows significantly.

The power spectral density of FFO is computed as Fourier
transform of the correlation function of the second kind
(D[T]:ifgav(vo(t)vo(H 7))dt, where vy(t)=d¢(t,0)/dt is the
voltage at the RC load (x=0), and T,, is the averaging time.
There are two general restrictions, complicating the calcula-
tion of the spectral density: on one hand, the time step should
be small enough to resolve oscillations, and on the other
hand, the averaging time T, should be rather large to resolve
fine spectral spikes. Due to these restrictions, the noise in-
tensity was chosen—y=0.1. Nevertheless, this is the same
limit of low noise intensity as in the experiments, since IVCs
are almost unaffected by the noise, the spectral spikes are
narrow, and the linewidth perfectly scales proportionally to
the noise intensity (see below).

In Fig. 2 the power spectral density of FFO is presented.
As one can see, the emitted signal of FFO at flux-flow steps
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FIG. 2. (Color online) The calculated spectral density for L
=40, I'=3.6, and y=0.1: for uniform bias current distribution 7,
=0.24—blue (right) curve; for distribution [Eq. (6)],
7,=0.16—magenta (left) curve. Inset: the same, enlarged around
the spikes; Lorentzian approximation—red and green solid curves.
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FIG. 3. (Color online) FFO linewidth versus differential resis-
tance for L=40 and 7y=0.1. Empty triangles and crosses—
simulations and theory (5), 0=0.185 for uniform bias current dis-
tribution; circles and daggers—simulations and theory (5), o
=0.11 for nonuniform distribution [Eq. (6)]; cyan diamonds—
theory of Ref. 17 for uniform distribution; solid line—theory (4).

(FFSs) is nearly sinusoidal, in agreement with Ref. 23 and
experimental results: the power contained in the second and
third harmonics is much lower than in the main one. Also,
the spectral peak is perfectly Lorentzian in about two orders
of magnitude interval. This is quite different with spectral
densities at the displaced linear slope, i.e., at small bias cur-
rents and magnetic fields, where chaotic behavior is possible
and the linewidth is extremely large.!? It is important to note
that, while r, is about two times larger and the FFS is lower
in the nonuniform case, the spectral density, computed at the
top of the step, has nearly the same power, and only 1.5
times larger linewidth than in the uniform case. This is im-
portant for practical applications, where power consumption
can be reduced significantly with the cost of moderate line-
width increase.

In Fig. 3 the FFO linewidth versus differential resistance
r, for junctions of L=40 and y=0.1 is presented for uniform
and nonuniform [Eq. (6)] bias current distributions. It is seen
that in both cases, formula (5) is in good agreement with
numerical results, while formula (4) for short JTJ and for-
mula from Ref. 17 [in formula (4), @ must be substituted by
inverse static resistance 7,/v] significantly underestimate the
linewidth. Certain increase in the linewidth for small r, range
is due to the slight growth of r, at the top of IV curves. The
minimum of Af corresponds nearly to the top of IVCs, which
is often used as working point for practical applications. In
spite of more than two times different values of r; for uni-
form and nonuniform [Eq. (6)] bias current distributions, the
minimal attainable linewidth is nearly the same, which
makes the FFO to be quite different from other types of
Josephson oscillators, such as the short JTJ [Eq. (4)] and
shuttle fluxon oscillator." Taking into account that the con-
sidered model is 1D and the only bias current is fluctuating,
this is clear indication of the noise self-pumping effect in the
FFO, which is realized in a similar fashion as usual ac self-
pumping effect:»!° fluctuating fluxons, radiating from the
FFO, induce fluctuating magnetic field at the FFO ends,
which in turn modulates the fluxon dynamics, and increases
the linewidth [boundary conditions (2) and (3) depend on the
phase, which fluctuates since it is governed by Eq. (1) with
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noise]. This important contribution into the magnetic field
fluctuations has been missed in Ref. 18 due to the method
used: first, the dynamical equations without noise were de-
rived, after which small fluctuational variations of param-
eters were calculated. If the same approach in Ref. 18 is
considered with noise from the very beginning, this addi-
tional “self-pumping” contribution to the magnetic field fluc-
tuations naturally appears.

By the change of variables, the small parameter e
=(a/n)*<1 in front of the sin(¢) term can be introduced.
Then the solution of Eq. (1) can formally be obtained as the
expansion: @(x,1)=y(x,1)+€d,(x,1)+ € dy(x,t)+..., even
in the case when the bias current and correspondingly the
phase ¢ are fluctuating. The noise must be taken into account
in the equation for ¢(x,1),

o, + ady — do_—Beby_ =m0+ ynd),  (7)

since even vanishing noise leads to the diffusion of the
phase. This diffusion, consequently leads to nonzero
linewidth?>* of the signal ¢;(x,?), and the right-hand side
(RHS) of Eq. (8), which are narrow-band random processes,
centered around oscillation frequency w; [here ¢,,(x,1) is the
low frequency part of ¢,(x,7)],

b1, +ad - - P =—sin(dy+ Py +...).  (8)

It is obvious that the product of two narrow-band processes
in the RHS of the equation for ¢,(x,1),

by Fady — ¢y —Bdy =-, cos(¢g + o+ ...),  (9)

gives the correction to the low frequency part of the spec-
trum and the narrow-band process at 2w;.

Due to linearity of Eq. (7), supplemented by the boundary
conditions (2) and (3), it is seen that the phase can be cast
into the sum: ¢(x,1)=d,(x,1)+ pAx,1), where indices d and
f stand for the deterministic and fluctuational parts, respec-
tively. However, it is still a challenge to solve Egs. (7)—(9)
with so complex boundary conditions even in the small noise
limit. Therefore, we can only assume that the noise in the
boundary conditions [which is the sum of all terms with
¢Ax,1)] is proportional to the bias current fluctuations with a
certain unknown factor o, and applying further the same ap-
proach in Ref. 18, one can obviously get the formula (5). In
doing this, we of course neglect by filtering of noise contri-
butions in the boundary conditions, but in the limit of small
noise the system does not feel the noise color if its cut-off
frequency is much larger than the linewidth.?* As discussed
in Ref. 18, an additional parametric broadening of the
linewidth>* could be due to the multiplication of bias current
and magnetic field fluctuations on the second and higher har-
monics of FFO radiation, but due to their small power (see
Fig. 2), this contribution can be neglected as well.

Let us investigate how the above observed effect varies
with the junction length L. In the theory of short JTJ the
noise intensity is inversely proportional to the critical cur-
rent. For long JTJ the critical current increases with the in-
crease in the length so one may think that longer junctions
with constant critical current density will have smaller line-
width [see Eq. (4)]. The corresponding curves are presented
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FIG. 4. (Color online) The FFO linewidth versus total current
for @=0.033, B=0.035, and I'=3.6. Uniform distribution y=0.1:
circles—L=20; diamonds—L=40; triangles—L=80; black solid
curve—theory (5) for L=60 and ¢=0.17. Empty black rectangles—
uniform distribution for L=40 and y=0.05. Nonuniform distribu-
tion y=0.1: magenta crosses—L=40; cyan daggers—L=2380. Inset:
the minimal attainable linewidth as function of length y=0.1: blue
crosses—uniform distribution, and red circles—nonuniform
distribution.

in Fig. 4. It is seen that in the uniform case, the increase in L
for L=40 does not help to decrease the linewidth, the curves
nearly coincide; while for the nonuniform case, the linewidth
increases for large lengths. This means that the discrepancy
with formula (4) will grow for L—cc. The lowest curve is
computed for noise intensity y=0.05, and Af is two times
smaller than for y=0.1, confirming that we are indeed in a
low noise limit, and the corresponding curves for smaller
noise intensity can be obtained by scaling. In the inset of Fig.
4, the minimal attainable linewidth is presented versus junc-
tion length L for uniform and nonuniform bias current distri-
butions. Both curves have minima at L=5-10. For L=40,
the minimal linewidth in the uniform case is 1.5-2 times
smaller than in the nonuniform one.

To further demonstrate that the noise self-pumping is
mainly spatial effect, let us consider an unloaded (c;=cy
=0) long JTJ with B=AI'=0 for uniform bias current distri-
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FIG. 5. (Color online) The IVC of unloaded FFO for a=0.2,
I'=3, and y=0.05. For B=0: green diamonds: L=1; blue circles:
L=5; red triangles: L=20. Cyan curve: 8=0.035, and L=20.
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FIG. 6. (Color online) The linewidth of unloaded FFO versus
total current for uniform bias current distribution @«=0.2, I'=3, and
v=0.05. Solid curves—simulations, symbols—theory (4). For g
=0: green diamonds—L=1; blue circles—L=5; red triangles—L
=20. Cyan rectangles—=0.035, and L=20. Black crosses—theory
(5) for B=0.035, L=20, and o=0.2.

bution. Then the boundary conditions take the simplest form:
¢(0,1),=p(L,1),=I". The corresponding IVCs are given in
Fig. 5 for «=0.2, I'=3, y=0.05, and L=1,5,20. The cyan
curve is shown for $=0.035, L=20 for comparison. From
Fig. 6, one can see that while for L=1 the computer simula-
tion results nearly agree with the formula for short JTJ [Eq.
(4)], with increase in the length the difference increases, and
for L=20, the discrepancy is about four times. Nearly the
same difference between simulations and theory (4) is ob-
served for 8=0.035, L=20. Therefore, we can conclude that
the noise self-pumping is indeed spatial effect and not in-
duced by coupling to the environment or surface losses.
Finally, let us consider the plots of the linewidth versus
junction length for several values of bias current 7,
=0.64;0.7;0.74 for the unloaded junction with «=0.2, B
=0, I'=3, and y=0.05 (see Fig. 7). The curves as functions
of L also have minima but in comparison with the minimal
attainable linewidth (inset of Fig. 4), the minima are deeper,

Af
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0.001‘ T T T T

1 10 100
L

FIG. 7. (Color online) The linewidth of unloaded FFO vs length
for different values of bias current (a=0.2,8=0,I'=3,y=0.05):
7,=0.64—Dblue crosses, 7,=0.7—red circles, and 7,=0.74—green
diamonds.
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which is explained by the presence of more steep Fiske steps
(see Fig. 5) for intermediate lengths of the junction.

IV. CONCLUSIONS

The spectral properties of a long Josephson tunnel junc-
tion described by the one-dimensional sine-Gordon equation
with noise have been studied. The noise self-pumping effect
in this spatially extended system is investigated. This effect
is realized in a similar fashion as usual ac self-pumping ef-
fect in long JTJ: fluctuating solitons, radiating from the junc-
tion, induce fluctuating magnetic field, which in turn modu-
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lates the dynamics of the soliton chain, and increases the
spectral linewidth. Contrary to the theory for short JTJ, pre-
dicting linear decrease in the spectral linewidth with increase
in junction length, the minimum of the linewidth versus the
length is observed both for uniform and nonuniform bias
feed distributions. Nearly perfect agreement of the computer
simulation results with the formula (5) has been achieved.
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